新バッテリー搭載される機能 無限並列接続仕様

リチウムバッテリー並列使用の危険性!!

リチウムバッテリーを並列にして使用するリスクについてお話しします。バッテリーを並列に使用する場合の危険性、安全に使用する場合のポイントについて説明します。

1,電圧の不均衡による影響

並列状態で充放電を行うと、それぞれのバッテリー電圧不均衡が発生します。この電圧不均衡が発生すると、電圧が高いバッテリーから低いバッテリーへと電流を流し、電圧を等しくしようと作用が発生します。この作用により、急速な電流が流れる事による熱が発生します。この熱により、バッテリー基板のBMSを過熱損傷を与えたり、電池への負荷で電池の性能を著しく低下させる可能性があります。

2,容量不均衡による影響

例えば、同じ電圧であっても異なる容量のバッテリーを並列して使用した場合にも、電圧不均衡と同じような影響が発生します。容量の小さい方のバッテリーは、容量の大きいバッテリーよりも、電圧降下するスピードが速く、そのような場合はバッテリー内セルの内部抵抗が早く高くなり、バッテリーのパフォーマンスを早期に落としてしまいます。

3,内部抵抗が不一致の影響

上記の電圧、容量の不均衡による影響を受け、内部抵抗の不均衡の電池を使用続けた場合、充電中や放電中による熱により、リチウム電池が過熱され、エネルギー放出を制御できなくなり、火災に繋がる可能性があります。

4,並列仕様で使用したバッテリーは、個別交換出来ない。交換は全交換

例えば2個のリチウムバッテリーを並列で使用し、1個のバッテリーが壊れた場合、壊れたバッテリー1個を交換してもダメです。2個とも交換しなければなりません。何故かと言うと、1個だけ新しいバッテリーにしても、上記のような、電圧、容量、内部抵抗が異なります。1個だけ交換しても直ぐにバッテリーが壊れてしまいます。

EVOTECバッテリーが考えるリチウムバッテリーの並列仕様

弊社では、リチウムバッテリーをボートで使用する場合、限られたバッテリーケース寸法を考慮した時、体積エネルギーの小さい「LiFePO4」では、満足のいく容量が確保できない事、リチウムバッテリーの並列使用の危険性から、「NMC」三元素電池を採用してきました。制限の有るケース寸法でも最大限の容量を確保でき、また、軽さもという大きなメリットあります。

また、一方でLiFePO4というマテリアルのメリットがここへ来て注目されています。それは「価格」です。LiFePO4という正極材のマテリアルは中国の技術で多くの電池が生産されています。中国の国策とも言える大量生産から電気自動車にも投入されてきたLiFePo4電池ですが、ここに来て需要の低迷やトランプ関税の影響で、大幅にLiFePO4電池の価格低下が顕著になってきました。

そこで、弊社でもLiFePO4を使用したディープサイクルバッテリーの開発に着手しました。しかし、体積エネルギーが小さい為のデメリット、容量小さくなる事、重量が重くなることは、ある程度妥協したとしても、並列使用の安全性を確保する事に注力し、より大きな電力使用を想定するディープサイクルバッテリーには並列仕様が必須と考えてきました。

安全な並列使用を可能にする無限並列仕様対応BMSの開発

無限並列仕様BMSとは

無限に並列接続を可能にする為には、前述した並列使用したバッテリーの影響を考慮し、その影響を排除しなければいけません。そこで、弊社で開発した無限並列仕様BMSには大きな特徴が2つあります。

1,並列を監視する「Para Scoop」

この監視機能は、例えば並列使用を続けてバッテリー電圧に高低差が発生し、バッテリー間で勝手に充電が開始された時、大きな電流値をBMSが察知し、5Aの電流値に制限します。この制限を3分間維持し、その後解除しますが、まだ大きな電流値が確認される場合は、さらに3分間の制限を維持し、電流値の制限を繰り返し、バッテリー間の電圧バランスを整えます。

2,個々のバッテリーブロック電圧を監視する「Volt Scoop」

正極材のマテリアルによって制御開始電圧は異なりますが、規定の電圧時にバッテリーブロック間の電圧高低差「50mv」を超えた時、強制的にブロック間電圧の調整を自動で行います。最大で2Aの電流値で調整します。

2つの機能がもたらすメリットは!?

この無限並列を可能にするBMSを装着すると次のようなメリットがあります。

1,異なる容量のバッテリー並列使用が可能となる。例えば、36V60Ah+36V40Ahの並列使用が可能となります。(電圧と正極材マテリアルは同一が前提)

2,新旧のバッテリーを混ぜて並列使用が出来る。(電圧と正極材マテリアルは同一が前提)

3,一部他メーカーバッテリーでも並列可能とするバッテリーがありますが、台数制限と並列バッテリーの組み合わせを期間を設けて交換する(川下と川上)注意事項が設けられています。そのような事は心配せずご使用頂けます。

今後のEVOTECディープサイクルバッテリーの方向性

弊社では、今まで通り「軽さと大容量」のメリットを享受できるNMCバッテリーと、並列仕様可能BMS搭載で、使用幅が広がる価格メリットのある新開発のLiFePo4バッテリーで展開してまいります。今後も新機能を搭載したEVOTECバッテリーを案内していきます。

東京ドーム新アトラクションでEVOTECバッテリー採用

東京ドームに併設されている、東京ドームシティアトラクションズのアミューズメント施設に新たに追加される新アトラクション「ZOOターボ!ZOOカート!」にEVOTECバッテリーが採用されました!!

採用にあたっては、以前からテストもかねて5年ほど前から別のアトラクションに採用していました。その期間トラブルが無かった事が今回、新たなアトラクションへの採用への布石となりました。EVOTEC採用前に使用していた鉛バッテリーや、別会社のリチウムバッテリーは、1日稼働できずに止まってしまったり、原因不明のバッテリー故障に悩まされていたとの事です。

また、鉛バッテリーと比べて重量が少なくなったことで、乗り物自体への負荷が減り、タイヤやフレームへの負担が少なくなり、部品の寿命期間が長くなると、採用のきっかけをお話しして頂きました。

要望に合わせてカスタムセットした並列仕様バッテリー

400Wのモーターを採用しているバッテリーカー。一日止まらず動き続ける事が必要で、2160Wのバッテリーを2個並列にしての使用との事で、並列使用にカスタムセットしました。バッテリー内に内蔵されるBMSを並列仕様(放電時の2つのバッテリーバランスを監視する)に変更、また、充電システムも一工夫してあります。

並列仕様の充電の場合は、並列されたバッテリーをバランス良く充電する事が難しく、バッテリーの故障に繋がります。この場合、車体の電源(ブレーカー)を落とすと並列に繋がれている配線がリレーで解除されて、それぞれのバッテリーに充電されるという仕組みになっています。

リチウムバッテリーを安全に使用する為に!!求められる条件に安全性を熟慮してご提案!!

今回、リチウムバッテリーを使用する為のカスタマイズは、バッテリーの並列仕様とそれに合わせた充電システムです。リチウムバッテリーには鉛バッテリーとは異なる特性があります。リチウムバッテリーを安全にご使用頂くには、リチウムバッテリーの特性を考慮しなければいけません。リチウムバッテリーは簡単に並列使用は出来ません。並列仕様のBMSや充電システムが必要です。弊社では使用環境に合わせて、リチウムバッテリーのカスタマイズも対応致します。

Bluetooth通信アプリでバッテリーの可視化

弊社ディープサイクルバッテリーをスマートフォンアプリで、確認するシステムをやっと構築し、バッテリーに装着できるようになりました。

電波法に準じて技術基準適合証明を取得

Bluetoothでの微弱な電波は、電波法では無線局の免許は不要となりますが、「技術基準適合証明を受けた無線機使用に限る」とされています。要は、「技術基準適合証明」を受けていない無線機(Bluetooth含む)を使用する場合は、使用する人が無線局の届け出を行わなければいけなくなります。その届け出を行わず、技術基準適合証明を受けていない無線機を使用した場合は、「1年以下の懲役、100万円以下の罰金」の対象となってしまいます。

Bluetoothアプリで確認できる事

このアプリでバッテリー内の情報を確認できる内容は、バッテリー残量率(①)、充電電流(②)、放電電流(④)、バッテリーの電力(⑤)などです。

例えば、電力(⑤)がいつもより大きく電力が増えれば、使用している機器の不具合が確認できます。モーターが劣化していたり、配線が劣化している場合などは、電力が大きくなります。

また、ブロック電圧差(⓻)が、大きくなってくるとバッテリーは不調となってしまいます。ブロック毎の電圧差を確認する事により、不具合が出る前にバッテリーを調整する事も可能になります。

搭載可能バッテリーについて

搭載されるバッテリーについては、最初はSE36700、SE24900、SE24600となります。今後全てのバッテリーに搭載可能となります。また、準備中ですが、既に購入頂いたバッテリーにも、後付けで可能となります。(生産から時間が経過しているバッテリーには、搭載が出来ないバッテリーもございます。)

充電に伴うAC電源の電圧降下についての検証

日本のコンセントの電圧は、通常100Vとなっております。100Vと言っても100Vピッタリでは無く、105Vなど若干上の電圧だったり、100Vを下回っている場合もあります。その電源の環境下で電圧が異なっています。

電圧降下に伴う影響

高電圧化しているバッテリー環境。昔は12Vバッテリーをゆっくり充電すれば良かったのが、今は24V、36Vなど高電圧バッテリーを早く充電する事が多くなりました。高電圧のバッテリーを早く充電するという事は、「高電力が必要」という事になります。高電力が必要という事は、AC電源の電圧が降下する事になります。それではどれぐらい降下するのでしょうか?

3台のリチウムバッテリーを充電比較!!

通常のリチウムバッテリ用の充電器3台を使用し、それぞれ3台のリチウムバッテリー充電します。AC電源の電圧が、充電前:104.5V→97.8V 約7V弱の電圧降下が確認されました。

より電圧降下する使用環境とは!?

そこで、より抵抗値を増やすため、30mのリールコードを使用しました。電気抵抗は、配線の長さが2倍となれば、抵抗も2倍となります。皆様もリールコードを使用されたことはあるのではないでしょうか?リールコードを使用して、上記のように3台のリチウムバッテリーを専用の充電器で充電します。AC電源電圧 充電前:104.4V→充電後:93.0V 約11.5V程電圧を降下させます。

電圧降下した電源での機器の充電の影響について!!

電圧降下した環境下で充電を行っていると、電圧不足により、使用している機器の動作が正しく動かなかったり、使用している機器にダメージを与え、壊してしまいます。また、電流値が高くなりますので、電気代金が高くなってしまいます。

省電力「MULTI CHARGER マルチチャージャー」を使用した充電検証

前述の検証から、充電器をリチウム専用充電器から、マルチチャージャーに変更して、同じようにリチウムバッテリー3台を充電し検証してみました。

通常リチウム充電器3台マルチチャージャー
3台のリチウムバッテリーを充電104.5V→97.8V 6.7V降下105.2V→101.1V 4.1V降下
リールコード使用3台リチウムバッテリー充電104.4V→93.0V 11.4V降下104.7V→97.0V 7.7V降下
AC電源電圧降下検証

検証から分かる事!!

高出力のリチウム充電器(3台)は、約7.0V弱の電圧降下となります。マルチチャージャー使用した場合は、大幅な電圧降下を実現します。それが抵抗値が増えるリールコードを使用した時は、それがより如実に確認できます。この事から、今の充電環境下はどうなのか?確認する事が大事と考えます。より、確実・安全に充電環境下をマルチチャージャーは確約します。

バッテリー充電検証 LiFePO4(リフェ)36V

いろいろバッテリーを充電できるEVOTEC MULTI CHARGER。36VはEVOTECのNMCリチウムとLiFePO4(リフェ)のバッテリーが充電可能です。しかし、この異なるマテリアルを使用しているバッテリーは、最大充電電圧が異なります。NMC(EVOTEC)の最大電圧が、42.0V、LiFePO4(リフェ)が、43.8Vとなります。(この場合の36Vは、NMCが10直列、LiFePO4が12直列を指します。)弊社のMULTI CHARGERは、NMCの最大電圧42.0Vに合わせています。ここで、一つ疑問が発生します。最大電圧が1.8V高いLiFePO4(リフェ)36Vを42.0Vの電圧で満充電できるのか!?という疑問です。

LiFePO4(リフェ)の充電電圧と充電容量の特性がカギ!!

この疑問の答えから言いますと、満充電が可能です。何故かと言いますと、LIFePO4(リフェ)の充電電圧と容量の特性が関係します。

LiFePO4(リフェ)36Vは、充電電圧が39.0V付近までは、殆ど充電されていませんが、40Vから42Vのこの2Vの電圧範囲で、大半の充電を行います。その後も殆ど充電容量は上がらず、43.8Vの最大電圧まで終了します。

EVOTEC MULTI CHARGERの充電アルゴリズムが、満充電に貢献!!

41.5Vから42.0V電流値を小さくしながら、バランスよく流し込む方式です。これにより、LiFePO4(リフェ)の36Vバッテリーも満充電が可能となります。

LiFePO4(リフェ)専用充電器で終了後の放電テストとEVOTEC MULTI CHARGERでの充電終了後の放電テスト比較結果!!

LiFePO4の充電器で充電終了後、放電テストした結果です。43.7579Vまで充電終了後に、放電テストした結果が、61.341Ahとなりました。

EVOTEC MULTI CHARGERで42.0Vで充電終了し、41.7853Vから放電を開始しました。放電容量は61.348Ahでした。LiFePO4(リフェ)充電器よりも、若干ながら多く放電できました。この結果から、EVOTEC MULTI CHARGERでLiFePO4(リフェ)バッテリーを満充電できることが分かると思います。

鉛バッテリーの充電電圧の疑問!?

鉛ディープサイクルバッテリーを充電しようとする時、充電電圧がどれぐらいか気にされていますか?そのほとんどの鉛バッテリー用充電器(12V用)は15Vを超えて、16Vに近い電圧で充電されるものが多いようです。

その電圧は高くないのでしょうか?これほど充電電圧が高くないと、鉛バッテリーは満充電されないのでしょうか?検証してみました。

検証内容は、新品のボイジャーM27MFを鉛バッテリー専用充電器で充電(最大電圧15.9V)し、容量測定器で40Aの放電電流値で、10.8Vまで放電させ、容量と電力を調べるテストです。

結果は、容量54.709Ah、電力は628.023Ahという結果でした。

次は弊社MULTI CHARGERで充電、放電テストへ

弊社開発中のマルチチャージャー。鉛のバッテリーも充電できるラインを設けていますが、最大電圧は、14.6Vとなります。この電圧だと鉛バッテリーは満充電できないのでしょうか?

弊社マルチチャージャーの12Vライン(EVO12Vラインは除く)の充電アルゴリズムです。CCCV方式で(定電流定電圧充電)13.9Vまで10Aで充電し、それ以降は電流値が下がり、定電圧で調整していく方式です。

検証方法は、前述した鉛用充電器の検証と一緒で、マルチチャージャーで充電が終了したバッテリーを、容量測定器で40Aの放電電流値で10.8Vまで放電させ、容量と電力を調べるテストです。

結果は容量55.348Ah、電力は645.472Whという結果になりました。

鉛バッテリー充電器とマルチチャージャーで満充電したバッテリーの放電テストの結果をまとめました。

充電器最大電圧容量電力
鉛バッテリー充電器15.9V54.709Ah628.023Wh
EVOTECマルチチャージャー14.6V55.348Ah645.472Wh
充電器容量テスト(10.8Vまで40A放電)

放電テストの結果から言える事!!

このテスト結果から言える事は、比較的新しいバッテリーには、15V超える高い電圧の充電は必要ないという事です。ほぼ同じ容量と電力を計測したテストですが、最大電圧の低いEVOTECマルチチャージャーの方が若干上回る結果が、それを証明しています。

Charge stages of a lead acid battery [1]
Source: Cadex

上記表は、推奨される鉛バッテリーの充電方法と電圧の関係です。ここでは、1ブロック2.30V~2.45Vの値を推奨しています。これは、6ブロックの鉛12Vバッテリーの場合、13.8V~14.7Vの値です。

15V超える充電は必要なのか!?

鉛バッテリーは、1ブロック2Vが6個直列になり、12Vバッテリーを構成しています。15V超える充電電圧は、過充電と言って良いと考えます。バッテリーメーカーが公表しているアブソープ充電電圧の最大値も、2.45V/1ブロックで14.7Vという事になります。サルフェーションが進み、劣化したバッテリーの各ブロック均一化を図るために、高電圧充電(16Vほど)を行うケースがあるようですが、過充電での性能復帰はあまり期待できず、このような状態になる事を防ぐ方が、適切と考えます。

鉛バッテリーを長く使用するには!!!それに貢献できるEVOTECマルチチャージャー

鉛バッテリーを長く使用するには、適切な充電電流値で、適切な電圧で充電する事。大きな電流値で充放電を行わない事などが挙げられます。EVOTECマルチチャージャーは、10Aの電流値で、バッテリーに最大の充電効率をもたらす3段階充電方式を備えた充電器です。(上記アルゴリズム参照)鉛バッテリーの長寿命にも貢献します。

バッテリーをメンテナンスする!!

リチウムバッテリーが止まってしまう原因の多くは、バッテリー電池の電圧アンバランスにより、過放電保護装置が作動が起因となります。それでは、アンバランスになってしまったバッテリーは使用できなくなってしまうのでしょうか?

電池のアンバランスの原因が電池の寿命場合は、その電池を取り除く、人で言う外科的手術が必要となります。しかし、電池の寿命では無くアンバランスを起こす事があります。その場合は、手術までは必要なく、検査・調整である程度アンバランスを解消し、使用できるようになります。

アンバランスは何故起きる?

リチウムバッテリーは、幾つかのブロックで構成されています。その電圧が高くなればなるほど、ブロック数は多くなります。弊社の場合、12V(3ブロック)、24V(7ブロック)、36V(10ブロック)となります。このブロック毎の電圧差異が大きければ大きいほど、バッテリーの容量は低下します。

電池は放電が大きい(電池の電圧低下)ほど、電池ブロック毎の電圧差異が大きくなります。その差異を大きくしないようにするには、深放電使用をしない事が大事となります。

例えば、このバッテリー。3年間使用したバッテリーの各ブロック電圧を測定した結果です。NO4ブロックの電池が大きく電圧を低下させています。このブロックNO4が、放電時には一早く過放電保護機能作動電圧に達し、また充電時には、その他の電池ブロックが過充電保護電圧まで達し、充電器を止める事になります。これにより容量低下となっている状態です。この方は、深放電(容量を使い切ってしまう程)での使用回数が多く、電池のバランスを大きくしてしまったようです。

バランス調整器で各ブロック電圧を均一に調整。

弊社のバランス調整器で、電圧を調整した時の電池ブロック毎の電圧です。大きく異なっていたブロック電圧差異を0.010Vまで調整。これでバッテリーブロック電圧は均一とはなりましたが、これで正常に使用できるとは限りません。充放電テスト行い、放電時でどこまで電圧差が広がり、充電時でどこまで電圧差を小さくできるかの確認を行わなければ行けません。また、3年間使用していた電池です。全ての電池が新品同様といきません。

新アイテムを導入

弊社では各ブロック電圧差を維持調整を出来るように、新アイテムを導入してバッテリーのメンテナンスを行っています。これは、設定した範囲内で各ブロック電圧を監視し、電池ブロック電圧差異を自動で調整するものです。

左が放電時のデータ。右が充電終了後の電圧データとなります。放電時には電池ブロック毎の電圧差(Cell Volt.Diff:)0.424Vだったものが、充電完了時には電圧差は(Cell Volt.Diff:)0.010Vとなっています。これで、大きく容量を低下させたバッテリーは、62Ah程の容量を使用できるバッテリーとして蘇りました。

EVOTEC36V50Ahはどれぐらい使えるの?

SE36500

弊社で販売を開始した36V50Ahバッテリー。どのくらいの時間が使用できるのか?というお問い合わせを多数いただきました。「50Ahだと心配だ!!」というご意見が多数ありましたので、実際使用してみて使用後の残容量を測定しました。

亀山ロコアングラーの鶴岡さんにご協力いただき、使用結果を下記にまとめました。

AM 7:00 野村ボート出発 (41.75V)→ 段々畑 → 松下ボート → よりともボート前ワンド → 笹川上流 → トキタボート前 → 長崎 →折木沢上流→ PM 16:00 野村ボート 帰着(36.48V)

残容量結果

容量テスト結果

約20km弱を9時間移動で、50Ahバッテリーの残容量が22.3Ahでした。50Ahバッテリーを約半分消費したという結果です。コンディションよって異なると思いますが、リチウムバッテリーの36Vは電圧が高い為、鉛バッテリー12V×3個と比較して、消費電流値が少なく、容量が減りにくい事がメリットです。

参考にしてください。

船検対応バッテリーについての詳細

船検対応バッテリーについて、お問い合わせが多数ありますので、弊社現状の詳細と今後の展望を纏めてみましたので、参考にしてください。

現状船検対応とされるバッテリーについて

今までJCIが船検対応として認めてきた基準について下記の表に纏めてみました。

基準番号基準種類基準内容備考
IEC62619 組蓄電池安全基準
国際安全基準
組電池とBMS(基板)の安全基準JCIが対応と認める基準値の現最高位の基準
JIS C 8175-2 組畜電池安全基  準 
日本安全基準
組電池とBMS(基板)の安全基準JCIが対応と認める基準値の現最高位の基準
IEC62619 単電池安全基準
国際安全基準
単電池のみの安全基準電池のみの安全基準、現在は対応基準として認められている
IEC62133-2 単電池安全基準  国際安全基準単電池のみの安全基準電池のみの安全基準、現在は対応基準として認められている
UN38.3 国際輸送に求められる安全基準輸送時求められる基本的安全基準 法的拘束力無し 自己宣言この基準での船検対応は現在廃止されました。
JCI船検対応表

船検対応のバッテリー基準は流動的

上記表にあるように、船検対応バッテリーと一括りにしても、その対応基準は5種類の基準がございます。しかし、UN38.3で対応としていた基準は廃止され、現対応基準は4種類となっています。現在はこの基準では船検対応とはなりません。このように船検対応バッテリーの基準は流動的になっています。よって、現在は認められている基準でも、今後その基準が変わり非対応となる事も注意しなければいけません。

弊社が最高基準のIEC62619(バッテリーブロックとBMS)、JIS C 8175-2(バッテリーブロックとBMS)で対応取得する理由。

弊社がJCIに船検対応となる基準を上記表の2つの最高基準で申請する理由は、JCI本部担当者から、「最高基準であるこの2つの基準での申請は、今後基準廃止とはならない」という事を確認したからです。表にもあるように、対応基準とされていた基準が、その後、廃止された事実がある為、船検対応バッテリーがその後、非対応のバッテリーになる事を防ぎたいという事からの対応です。

JIS C 8715-2レポート
IEC62619レポート

また、バッテリー自体の安全性をテスト機関に認められることも重要と考えています。リチウムバッテリーは、皆さんもご存じのように「安全」なものではありません。その安全性を長い時間とコストをかけても、電池とBMS両方を試験して、第三者機関に認められる事が、とても重要な事と認識し、取得を続けています。

*下記表の基準番号とは上記表の基準番号となります。

種類SE1230SE12750SE121000SE15500SE151000SE151800SE24600SE24900SE36500SE36700
基準番号無し無し無し無し無し①、②
備考検査期間申請中(3月中旬頃)検査期間申請中(3月中旬頃)対応済み対応済み(現行ケース)対応済み(現行ケース)検査機関申請中(2月初旬頃)対応済み(1個前のケースから)
弊社バッテリー船検対応状況

今後の船検対応バッテリーについての所見

前述の通り、船検対応と言えども、幾つかの基準種類に分かれています。今後この船検対応がどのように推移するかは流動的です。しかし、昨年末PSE電気安全法が改正された通り、BMSの安全性が求められるようになったように、リチウムバッテリーの安全性にはBMSの性能基準は重要となります。リチウムバッテリーの動作はBMSで制御されます。それが規定されるという事は、過充電での事故(BMS制御不能)が多いという事です。そのような事からも、リチウム電池ブロック+BMSの安全性が必至となるのではないでしょうか?「船検対応とされているバッテリーが、どの基準で対応となっているかを確認されることも重要と考えます。

PSE電気安全法の審査基準改正

令和4年(2022年)12月28日より電気安全法が改正されました。今までの基準では足りなかった基準を補うために改正が行われました。大きな変更点は保護回路基準が定められていなかった別表第9基準を、国際規格に対応した別表第十二基準に1本化し、BMS性能の厳格化となったようです。

別表第十二基準とは!?国際規格IEC62619、日本規格JIS C 8715-2に準じる

別表第十二

弊社では、移動用として使用するリチウムバッテリーを先行してIEC62619/JIS C 8715-2を取得してまいりました。それは、リチウムバッテリーには重要な役割を果たすBMSを検査する項目があり、それをテストし認証を受ける事により、安心・安全につながる思いで各バッテリーで取得を続けてまいりました。また、この認証は船検対応出来るバッテリーとして高いランクで認められるため、取得を続けていますが、PSE電気安全法でもこの認証を基準値として改正されたとの事です。